Immerzeel, WW, van Beek, LPH & Bierkens, MFP Climate Change Will Affect Asian Water Towers. Science 3281382–1385 (2010).
Yao, T. et al. Different glacier status with atmospheric circulations in and around the Tibetan Plateau. Nat. Go up. Change 2663–667 (2012).
An, Z., Kutzbach, JE, Prell, WL & Porter, SC Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 41162–66 (2001).
Xing, Y. et al. Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the late Miocene: Evidence from plant macrofossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 35819–26 (2012).
Su, T. et al. Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the late Pliocene Longmen megaflora. Go up. past 91911–1920 (2013).
An, W., Hu, X., Garzanti, E., Wang, J. & Liu, Q. New Precise Dating of the India-Asia Collision in the Tibetan Himalaya at 61 Ma. Geophys. Res. Lett said. 481–10 (2021).
Myers, N., Mittermeier, RA, Mittermeier, CG, da Fonseca, GAB & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403853–858 (2000).
Wang, N. & Chang, M. Pliocene cyprinids (Cypriniformes, Teleostei) from the Kunlun Pass Basin, northeastern Tibetan Plateau and their effects on water system development and area uplift. Sci. China Earth Sci. 53485–500 (2010).
Ding, W., Ree, RH, Spicer, RA & Xing, Y. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 369578–581 (2020).
Ding, L. et al. Timing and mechanisms of uplift of the Tibetan Plateau. Nat. Rev. Earth Environ. 3652–667 (2022).
He, D., Chen, Y. & Chen, Y. Molecular phylogeny and biogeography of the genus Triplophysa (Osteichthyes: Nemacheilinae) on the Tibetan Plateau inferred from cytochrome b DNA sequences. The Prog. Nat. Sci. 161395–1404 (2006).
Google Scholar
Piao, S. et al. Responses and feedbacks of the alpine ecosystem of the Tibetan Plateau to climate change. Chin. Sci. bull 642842–2855 (2019).
He, D. & Chen, Y. Biogeography and molecular phylogeny of the genus Schizothorax (Teleostei: Cyprinidae) in China inferred from cytochrome b sequences. J. Biogeogr. 331448–1460 (2006).
Cao, W., Chen, Y., Wu, Y. & Zhu, S. Origin and evolution of schizothoracine fishes in relation to the disturbance of the Xizang Plateau. in Studies on the Period, Amplitude and Type of Uplift of the Qinghai-Xizang Plateau. (ed Chinese Academy of Sciences The Team of the Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau) 118–130 (Science Press, 1981).
Chen, Y., Chen, Y. & Liu, H. Studies on the position of the Qinghai-Xizang plateau region in zoogeographic divisions and its eastern demarcation line. ACTA Hydrobiol. Its. 2097–103 (1996).
Google Scholar
Man, J. et al. Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau. Glob. Change Biol. 242093–2104 (2018).
Chen, Y. and Cao, W. Schizothoracinae. in Fauna Sinica. Osteichthyes: Cypriniformes III. (ed PQ Yue) 273–390. (Science Press, 2000).
Mirza, MR A contribution to the systematics of schizothoracine fishes (pisces: cyprinidae) with descriptions of three new tribes. sir J. Zool. 23339–341 (1991).
Google Scholar
Leprieur, F. et al. Partitioning global patterns of freshwater fish beta diversity reveals distinct signatures of past climate change: Partitioning global patterns of fish beta diversity. Ecol. Lett said. 14325–334 (2011).
He, D., Chen, Y., Chen, Y. & Chen, Z. Molecular phylogeny of specialized Schizothoricine fishes and the rise of the Qinghai-Tibetan Plateau. Chin. Sci. bull 482354–2362 (2003).
Google Scholar
Chang, M. & Miao, D. Analysis of Cenozoic fossil fishes from the Tibetan Plateau and their paleoenvironmental bearings. Chin. Sci. bull 61981–995 (2016).
Tao, J., Chen, Y., He, D. & Ding, C. Relationships between climate and growth of Gymnocypris selincuoensis on the Tibetan Plateau. Ecol. Evolution 51693–1701 (2015).
Cao, L., Shao, W., Yi, W. & Zhang, E. A review of the conservation status of freshwater fish diversity in China. J. Fish Biol. 104,345–364 (2024).
Cheng, X., Tao, J., Wu, R., Chen, L. & Ding, C. Functional ecology of freshwater fish: research progress and prospects. Law Ecol. If not. 39810–822 (2019).
Google Scholar
Wisz, MS et al. The role of biotic interactions in shaping distributions and realized species assemblages: implications for species distribution modelling. Biol. said Rev. 8815–30 (2013).
Wu, Y. and Wu, C. The Fishes of the Qinghai-Xizang Plateau. (Sichuan Publishing House of Science & Technology, 1992).
Tao, J., Ding, C. & Ho, Y.-S. Publish translations of the best Chinese papers. Nature 557492 (2018).
Tedesco, PA et al. A global database on freshwater fish species occurring in drainage basins. Sci. Data 4170141 (2017).
Jeliazkov, A. et al. A global database for metacommunity ecology, integrating species, traits, environment and space. Sci. Data 76 (2020).
Zhou, C. et al. Comprehensive transcriptome data for endemic Schizothoracinae fish on the Tibetan Plateau. Sci. Data 728 (2020).
Jia, Y., Liu, Y., Chen, K., Sun, H. & Chen, Y. Climate, habitat and human disturbance driving variation in life history traits of invasive goldfish Gilded Carassius (Linnaeus, 1758) in a river of the Tibetan Plateau. Water Invasions 14724–737 (2019).
Chen, D. et al. Assessment of past, present and future environmental changes in the Tibetan Plateau. Chin. Sci. bull 603025–3035 (2015).
Google Scholar
You, T. et al. SchiSOFT: A global dataset on species occurrences and functional traits of Schizothoracinae fish. part of figshare. https://doi.org/10.6084/m9.figshare.24638538.v1 (2024).
Hyyrö, H. A bit-vector algorithm for computing Levenshtein and Damerau edit distances. Nord. J. Comput. 1029–39 (2003).
Page, MJ et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLOS Med. 18e1003583 (2021).
Burda, BU, O’Connor, EA, Webber, EM, Redmond, N. & Perdue, LA Estimating data from numbers using a Web-based program: Considerations for a systematic review. Res. Synth. Method 8258–262 (2017).
Zizka, A. et al. CoordinateCleaner: Standardized cleaning of event records from biological collection databases. Methods Ecol. Evolution 10744–751 (2019).
Pease, AA, Taylor, JM, Winemiller, KO & King, RS Ecoregional, catchment, and reach-scale environmental factors shape the functional-trait structure of stream fish assemblages. Hydrobiologia 753265–283 (2015).
Toussaint, A., Charpin, N., Brosse, S. & Villéger, S. Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Sci. Rep. said. 622125 (2016).
Su, G., Villéger, S. & Brosse, S. Morphological diversity of freshwater fishes differs between kingdoms, but morphologically extreme species are prevalent. Glob. Ecol. Biogeogr. 28211–221 (2019).
Brush, S. et al. FISHMORPH: A global database on the morphological characteristics of freshwater fishes. Glob. Ecol. Biogeogr. 302330–2336 (2021).
Chen, Y., Chen, Y. and Liu, H. The Fishes of the Hengduan Mountains Region. (Science Press, 1998).
Boettiger, C., Lang, DT and Wainwright, PC rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish Biol. 812030–2039 (2012).
Guo, Y., Zhang, R. and Cai, L. Xinjiang Ichthyology. (Xinjiang Science and Technology Press, 2012).
Amatulli, Mr. et al. Hydrography90m: a new high-resolution global hydrographic dataset. Earth Syst. Sci. Data 144525–4550 (2022).
Chapman, AD Current Best Practices for Generalizing Sensitive Species Occurrence Data. Cph. GBIF Secr. https://doi.org/10.15468/doc-5jp4-5g10 (2020).